Решите уравнение x^2-2x+\sqrt{6-x}=\sqrt{6-x}+35.
Решение
ОДЗ:
6-x \geq 0; -x \geq -6; x \leq 6. x^2-2x+\sqrt{6-x}=\sqrt{6-x}+35; x^2-2x-35=0; D=b^2-4ac=4-4 \cdot 1 \cdot (-35)=144;\displaystyle x_1=\frac{-b+\sqrt{D}}{2a}=\frac{2+12}{2}=7; – не удовлетворяет ОДЗ.
\displaystyle x_2=\frac{-b-\sqrt{D}}{2a}=\frac{2-12}{2}=-5.Ответ: -5.
Источник: ОГЭ-2025. Математика. Типовые экзаменационные варианты. 36 вариантов. Ященко И. В. (вариант 31) (Решебник)
ОГЭ-2024. Математика. Типовые экзаменационные варианты. 36 вариантов (вариант 21) (Решебник)