В среднем из 150 садовых насосов, поступивших в продажу, 6 насосов подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос подтекает.
Решение
Не подтекает насосов 150-6=144 штук.
Согласно классическому определению вероятностей имеем формулу \displaystyle P(A)=\frac{m}{n}, где m – число благоприятных исходов (в нашем случае насосы которые подтекают), а n – количество всех исходов (всего насосов).
Подставим в формулу и найдем вероятность того, что один случайно выбранный для контроля насос подтекает: \displaystyle P(A)=\frac{6}{150}=0,04.
Ответ: 0,04.
Источник: ЕГЭ 2022. Единый государственный экзамен. Математика. Базовый уровень. Готовимся к итоговой аттестации. Учебное пособие (вариант №18) (Купить книгу)