Решите уравнение (x^2-25)^2+(x^2+2x-15)^2=0.
Решение
Сумма квадратов равна нулю. Значит каждое слагаемое должно быть равно нулю. Запишем:
\begin{cases} (x^2-25)^2=0, \\ (x^2+2x-15)^2=0. \end{cases} \implies \begin{cases} x^2-25=0, \\ x^2+2x-15=0. \end{cases} x^2-25=0; x^2=25; x_{1,2}=\pm 5. x^2+2x-15=0; D=b^2-4ac=4-4 \cdot 1 \cdot (-15)=64; \displaystyle x_3=\frac{-b+\sqrt{D}}{2a}=\frac{-2+8}{2}=3; \displaystyle x_4=\frac{-b-\sqrt{D}}{2a}=\frac{-2-8}{2}=-5.Одинаковый множитель x=-5. Значит он и идет в ответ.
Ответ: -5.
Источник: ОГЭ-2025. Математика. Типовые экзаменационные варианты. 36 вариантов. Ященко И. В. (вариант 29) (Решебник)
ОГЭ-2024. Математика. Типовые экзаменационные варианты. 36 вариантов (вариант 19) (Решебник)